

Professional Development Service for Teachers

Applied Maths Induction Workshop 1 - Accelerated Linear Motion - Solutions

2010 - Ordinary Level - Question 1

A car travels along a straight level road.
It passes a point P at a speed of $12 \mathrm{~m} / \mathrm{s}$ and accelerates uniformly for 6 seconds to a speed of $30 \mathrm{~m} / \mathrm{s}$.

It then travels at a constant speed of $30 \mathrm{~m} / \mathrm{s}$ for 15 seconds.
Finally the car decelerates uniformly from $30 \mathrm{~m} / \mathrm{s}$ to rest at a point Q.
The car travels 45 metres while decelerating.

Find (i) the acceleration
(ii) the deceleration
(iii) $|P Q|$, the distance from P to Q
(iv) the average speed of the car as it travels from P to Q.

Solution

Acceleration
$\left.\begin{array}{l}u=12 \\ v=30 \\ t=6\end{array}\right\} v=u+a t \Rightarrow a=\frac{v-u}{t} \Rightarrow a=\frac{30-12}{6} \Rightarrow a=3 \mathrm{~m} / \mathrm{s}^{2}$
Deceleration
$\left.\begin{array}{l}\left.\begin{array}{l}u=30 \\ v \\ =0 \\ s\end{array}\right\} 45\end{array}\right\} v^{2}=u^{2}+2 a s \Rightarrow a=\frac{v^{2}-u^{2}}{2 s} \Rightarrow a=\frac{0-900}{90} \Rightarrow a=-10 \mathrm{~m} / \mathrm{s}^{2}$
(iii) Distance from P to Q equals area under graph

$$
\begin{aligned}
& =(6 \times 12)+\left(\frac{1}{2} \times 6 \times 18\right)+(15 \times 30)+45 \\
& =621 \text { metres }
\end{aligned}
$$

(iv) Average Speed $=\frac{\text { Total Distance }}{\text { Total Time }}$

Firstly, must find time elapsed during deceleration phase:

$$
\begin{aligned}
& \left.\begin{array}{l}
u=30 \\
v=0 \\
a=-10
\end{array}\right\} v=u+a t \Rightarrow t=\frac{v-u}{a} \Rightarrow t=\frac{0-30}{-10} \Rightarrow t=3 \\
& \Rightarrow \quad \text { Total Time }=6+15+3=24 \text { seconds } \\
& \Rightarrow \quad \text { Average Speed }=\frac{621}{24} \simeq 26 \text { seconds }
\end{aligned}
$$

2007 - Ordinary Level - Question 1

A car travels from p to q along a straight level road.
It starts from rest at p and accelerates uniformly for 5 seconds to a speed of $15 \mathrm{~m} / \mathrm{s}$.
It then moves at a constant speed of $15 \mathrm{~m} / \mathrm{s}$ for 20 seconds.
Finally the car decelerates uniformly from $15 \mathrm{~m} / \mathrm{s}$ to rest at q in 3 seconds.
(i) Draw a speed-time graph of the motion of the car from p to q.
(ii) Find the uniform acceleration of the car.
(iii) Find the uniform deceleration of the car.
(iv) Find $|p q|$, the distance from p to q.
(v) Find the speed of the car when it is 13.5 metres from p.

Solution

(i)

(ii) Acceleration

(iii) Deceleration

$$
\left.\begin{array}{l}
u=15 \\
v=0 \\
t=3
\end{array}\right\} v=u+a t \quad \Rightarrow \quad a=\frac{v-u}{t} \quad \Rightarrow \quad a=\frac{0-15}{3} \quad \Rightarrow a=-5 \mathrm{~m} / \mathrm{s}^{2}
$$

(iv) $|p q|=$ Area under graph $=\left[\frac{1}{2} \times 5 \times 15\right]+[20 \times 15]+\left[\frac{1}{2} \times 3 \times 15\right]$

$$
=37 \cdot 5+300+22 \cdot 5
$$

$$
=360 \mathrm{~m}
$$

(v) Reaches 13.5 m from p during acceleration phase.

$$
\begin{aligned}
& u=0 \\
& \left.\begin{array}{l}
a=3 \\
s=13 \cdot 5
\end{array}\right\} v^{2}=u^{2}+2 a s \Rightarrow v=\sqrt{u^{2}+2 a s} \Rightarrow v=\sqrt{0+(2)(3)(13 \cdot 5)} \Rightarrow v=9 \mathrm{~m} / \mathrm{s} \\
& \hline
\end{aligned}
$$

2007 - Higher Level - Question 1(b)

A train accelerates uniformly from rest to a speed $v \mathrm{~m} / \mathrm{s}$.

It then continues at this speed for a period of time and then decelerates uniformly to rest.

In travelling a total distance d metres the train accelerates through a distance $p d$ metres and decelerates through a distance $q d$ metres, where $p<1$ and $q<1$.
(i) Draw a speed-time graph for the motion of the train.
(ii) If the average speed of the train for the whole journey is $\frac{v}{p+q+b}$, find the value of b.

Solution

Average Speed $=\frac{\text { Total Distance }}{\text { Total Time }}$
We know that the total distance is d. We therefore need to find the time for each section of the journey.

Acceleration

Area under graph $=p d \quad \Rightarrow \quad \frac{1}{2}\left(t_{1}\right)(v)=p d \quad \Rightarrow \quad t_{1}=\frac{2 p d}{v}$

Constant Speed

Area under graph $=d-p d-q d \quad \Rightarrow \quad t_{2} v=d-p d-q d \quad \Rightarrow \quad t_{2}=\frac{d-p d-q d}{v}$

Deceleration

Area under graph $=q d \quad \Rightarrow \quad \frac{1}{2}\left(t_{3}\right)(v)=q d \quad \Rightarrow \quad t_{3}=\frac{2 q d}{v}$
$\Rightarrow \quad$ Total Time $=\frac{2 p d}{v}+\frac{d-p d-q d}{v}+\frac{2 q d}{v}=\frac{2 p d+d-p d-q d+2 q d}{v}=\frac{d+p d+q d}{v}$
$\Rightarrow \quad$ Average Speed $=\frac{d}{\underline{d+p d+q d}}=\frac{\not \Delta v}{\not \lambda(1+p+q)}=\frac{v}{p+q+1}$

But Average Speed $=\frac{v}{p+q+b} \quad \Rightarrow \quad b=1$

```
1999 - Higher Level - Question 1(b)
```

A particle travels in a straight line with constant acceleration f for $2 t$ seconds and covers 15 metres. The particle then travels a further 55 metres at constant speed in $5 t$ seconds. Finally the particle is brought to rest by a constant retardation $3 f$.
(i) Draw a speed-time graph for the motion of the particle.
(ii) Find the initial velocity of the particle in terms of t.
(iii) Find the total distance travelled in metres, correct to two decimal places.

Solution

Constant Speed

$$
5 t v=55 \quad \Rightarrow \quad v=\frac{11}{t}
$$

Acceleration

$$
\begin{align*}
& \left.\begin{array}{l}
u=u \\
\begin{array}{l}
a=f \\
t
\end{array}=2 t \\
s=15 \\
v=\frac{11}{t}
\end{array}\right\} \text { There is enough information here for two equations in } u \text { and } f \\
& \begin{aligned}
s & =u t+\frac{1}{2} a t^{2}
\end{aligned} \\
& \begin{aligned}
& v=u+a t \quad 15=2 u t+2 f t^{2} \quad \Rightarrow \quad \frac{11}{t}=u+2 f t \\
& \Rightarrow \quad 11=u t+2 f t^{2} \\
& \Rightarrow \quad 11-u t=15-2 u t
\end{aligned} \\
& \\
& \\
& \Rightarrow \quad u t=4 \Rightarrow \quad f=\frac{11-u t}{2 t^{2}}
\end{align*}
$$

(iii) Need to find distance travelled during deceleration:

$$
\left.\begin{array}{rl}
\begin{array}{l}
u=\frac{11}{t} \\
v=0 \\
a=-3 f
\end{array}
\end{array}\right\} v^{2}=u^{2}+2 a s \quad \Rightarrow \quad s=\frac{v^{2}-u^{2}}{2 a} \quad \Rightarrow \quad s=\frac{0-\frac{121}{t^{2}}}{-6 f}, ~ \begin{array}{ll}
& \Rightarrow \quad s=\frac{121}{6 f t^{2}}
\end{array}
$$

But $f=\frac{11-u t}{2 t^{2}} \Rightarrow f=\frac{11-\left(\frac{4}{t}\right) t}{2 t^{2}} \Rightarrow f=\frac{7}{2 t^{2}}$

$$
\begin{aligned}
& \Rightarrow \quad s=\frac{121}{6\left(\frac{7}{2 \vdash^{\not ㇒}}\right) \vdash^{\not ㇒}} \\
& \Rightarrow \quad s=\frac{121}{21} \simeq 5.76 \mathrm{~m}
\end{aligned}
$$

$\Rightarrow \quad$ Total distance travelled $\simeq 15+55+5 \cdot 76=75 \cdot 76 \mathrm{~m}$

2009 - Higher Level - Question 1(b)

A train accelerates uniformly from rest to a speed $v \mathrm{~m} / \mathrm{s}$ with uniform acceleration $f \mathrm{~m} / \mathrm{s}^{2}$.

It then decelerates uniformly to rest with uniform retardation $2 f \mathrm{~m} / \mathrm{s}^{2}$.

The total distance travelled is d metres.
(i) Draw a speed-time graph for the motion of the train.
(ii) If the average speed of the train for the whole journey is $\sqrt{\frac{d}{3}}$, find the value of f.

Solution

$t_{1}: t_{2}=2 f: f=2: 1 \quad \Rightarrow \quad t_{1}=\frac{2}{3} T \quad$ and $\quad t_{2}=\frac{1}{3} T$

Acceleration

$\left.\begin{array}{l}u=0 \\ a=f \\ t=\frac{2}{3} T\end{array}\right\} v=u+a t \quad \Rightarrow \quad v=\frac{2}{3} f T$
$\begin{aligned} & d=\text { Area under graph } \Rightarrow \quad d=\frac{1}{2} T\left(\frac{2}{3} f T\right) \quad \Rightarrow \quad d=\frac{f T^{2}}{3} \\ & \text { Average Speed }=\frac{\text { Total Distance }}{\text { Total Time }}=\frac{d}{T}=\frac{f T}{3}\end{aligned}$
But, Average Speed $=\sqrt{\frac{d}{3}} \Rightarrow \quad \frac{f T}{3}=\sqrt{\frac{d}{3}} \quad \Rightarrow \quad \frac{f^{2} T^{2}}{9}=\frac{d}{3} \quad \Rightarrow \quad d=\frac{f^{2} T^{2}}{3}$
$\Rightarrow \quad \frac{f T^{2}}{3}=\frac{f^{2} T^{2}}{3} \Rightarrow f=f^{2} \quad \Rightarrow \quad f(f-1)=0 \Rightarrow f=0 \quad f=1$

2006 - Higher Level - Question 1(a)

A lift starts from rest. For the first part of its descent it travels with uniform acceleration f. It then travels with uniform retardation $3 f$ and comes to rest. The total distance travelled is d and the total time taken is t.
(i) Draw a speed-time graph for the motion.
(ii) Find d in terms of f and t.

Solution

$t_{1}: t_{2}=3: 1 \quad \Rightarrow \quad t_{1}=\frac{3}{4} t \quad$ and $\quad t_{2}=\frac{1}{4} t$

Acceleration

$$
\begin{aligned}
& \left.\begin{array}{l}
u=0 \\
\begin{array}{l}
a=f \\
t=\frac{3}{4} t
\end{array}
\end{array}\right\} v=u+a t \quad \Rightarrow \quad v=\frac{3}{4} f t \\
& d=\text { Area under graph } \Rightarrow \quad d=\frac{1}{2} t\left(\frac{3}{4} f t\right) \quad \Rightarrow \quad d=\frac{3 f t^{2}}{8}
\end{aligned}
$$

2008 - Higher Level - Question 1(a)

A ball is thrown vertically upwards with an initial velocity of $39 \cdot 2 \mathrm{~m} / \mathrm{s}$.

Find (i) the time taken to reach the maximum height
(ii) the distance travelled in 5 seconds.

Solution

$\left.\begin{array}{l}u=39 \cdot 2 \\ \left.\begin{array}{l}a \\ = \\ v\end{array}\right\}-9 \cdot 8\end{array}\right\} v=u+a t \Rightarrow t=\frac{v-u}{a} \Rightarrow t=\frac{0-39 \cdot 2}{-9 \cdot 8} \Rightarrow t=4 \mathrm{~s}$
(ii) First five seconds: 4 seconds upwards, 1 second downwards.

Upwards

Downwards
$\left.\begin{array}{l}u=0 \\ a=9 \cdot 8 \\ t=1\end{array}\right\} s=u t+\frac{1}{2} a t^{2} \quad \Rightarrow \quad s=(0)(1)+\frac{1}{2}(9 \cdot 8)(1) \quad \Rightarrow \quad s=4 \cdot 9, ~$
$\Rightarrow \quad$ Distance travelled in 5 seconds $=78 \cdot 4+4 \cdot 9=83 \cdot 3 \mathrm{~m}$

2002 - Higher Level - Question 1(a)

A stone is thrown vertically upwards under gravity with a speed of $u \mathrm{~m} / \mathrm{s}$ from a point 30 metres above the horizontal ground.
The stone hits the ground 5 seconds later.
(i) Find the value of u.
(ii) Find the speed with which the stone hits the ground.

Solution

(i)

$$
\begin{aligned}
& \Rightarrow u=\frac{-60+245}{10} \Rightarrow u=18 \cdot 5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(ii)

2008 - Higher Level - Question 1(b)

Two particles P and Q, each having constant acceleration, are moving in the same direction along parallel lines. When P passes Q the speeds are $23 \mathrm{~m} / \mathrm{s}$ and $5.5 \mathrm{~m} / \mathrm{s}$, respectively. Two minutes later Q passes P, and Q is then moving at $65.5 \mathrm{~m} / \mathrm{s}$.

Find (i) the acceleration of P and the acceleration of Q
(ii) the speed of P when Q overtakes it
(iii) the distance P is ahead of Q when they are moving with equal speeds.

Solution

(i) Motion of P :

$$
\left.\begin{array}{l}
u=23 \\
a=a_{1} \\
t=120
\end{array}\right\}
$$

Motion of Q :

$$
\begin{aligned}
& \left.\begin{array}{l}
u=5 \cdot 5 \\
v=65 \cdot 5 \\
a=a_{2} \\
t=120
\end{array}\right\} v=u+a t \Rightarrow \quad a=\frac{v-u}{t} \\
& \Rightarrow \quad a_{2}=\frac{65 \cdot 5-5 \cdot 5}{120} \Rightarrow a_{2}=\frac{1}{2} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Overtaking occurs when $s_{1}=s_{2}$

$$
\begin{aligned}
& s=u t+\frac{1}{2} a t^{2} \\
\Rightarrow \quad s & =(23)(120)+\frac{1}{2} a_{1}\left(120^{2}\right) \\
\Rightarrow \quad s & =2760+7200 a_{1}
\end{aligned}
$$

$$
\Rightarrow \quad 2760+7200 a_{1}=4260
$$

$$
\Rightarrow \quad a_{1}=\frac{5}{24} \mathrm{~m} / \mathrm{s}^{2}
$$

(ii) Motion of P :

$$
\begin{aligned}
& u=23 \\
& \left.\begin{array}{l}
a=\frac{5}{24} \\
t=120
\end{array}\right\} v=u+a t \quad \Rightarrow \quad v=23+\frac{5}{24}(120) \quad \Rightarrow \quad v=48 \mathrm{~m} / \mathrm{s} \\
& \hline
\end{aligned}
$$

(iii) Need to find the time at which $v_{1}=v_{2}$ and then find the difference between s_{1} and s_{2} at this time.
Motion of P
Motion of Q
$\left.\begin{array}{l}u=23 \\ a=\frac{5}{24} \\ t=t\end{array}\right\} v=u+a t$

$$
v_{1}=23+\frac{5}{24} t
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
u=5 \cdot 5 \\
a=\frac{1}{2} \\
t=t
\end{array}\right\} v=u+a t \\
& v_{2}=5 \cdot 5+\frac{1}{2} t
\end{aligned}
$$

$$
\begin{aligned}
& v_{1}=v_{2} \\
& \Rightarrow \quad 23+\frac{5}{24} t=5 \cdot 5+\frac{1}{2} t \quad \text {...multiply by } 24 \\
& \Rightarrow \quad 552+5 t=132+12 t \\
& \Rightarrow \quad 7 t=420 \\
& \Rightarrow \quad t=60 \\
& s_{1}=(23)(60)+\frac{1}{2}\left(\frac{5}{24}\right)\left(60^{2}\right) \quad s_{2}=(5 \cdot 5)(60)+\frac{1}{2}\left(\frac{1}{2}\right)\left(60^{2}\right) \\
& s_{1}=1755 \\
& s_{2}=1230 \\
& 1755-1230=525 \\
& \Rightarrow \quad P \text { is } 525 \text { metres ahead of } Q \text { when they are travelling with equal speeds. }
\end{aligned}
$$

2005 - Higher Level - Question 1(a)

Car A and car B travel in the same direction along a horizontal straight road.
Each car is travelling at a uniform speed of $20 \mathrm{~m} / \mathrm{s}$.
Car A is at a distance of d metres in front of car B.
At a certain instant car A starts to brake with a constant retardation of $6 \mathrm{~m} / \mathrm{s}^{2}$.
0.5 s later car B starts to brake with a constant retardation of $3 \mathrm{~m} / \mathrm{s}^{2}$.

Find (i) the distance travelled by car A before it comes to rest.
(ii) the minimum value of d for car B not to collide with car A.

Solution

(i) $\operatorname{Car} A$

$\left.\begin{array}{l}u=20 \\ a \\ =-6 \\ v\end{array}\right\} v^{2}=u^{2}+2 a s \Rightarrow s=\frac{v^{2}-u^{2}}{2 a} \Rightarrow s=\frac{0-400}{-12} \Rightarrow s=\frac{100}{3} \mathrm{~m}$

(i) $\operatorname{Car} B$

First 0.5 seconds
Afterwards

$$
\begin{aligned}
& \left.\begin{array}{l}
u=20 \\
t=0 \cdot 5 \\
a=0
\end{array}\right\} s=u t+\frac{1}{2} a t^{2} \\
& \Rightarrow \quad s=(20)(0 \cdot 5) \\
& \Rightarrow \quad s=10
\end{aligned}
$$

$$
\left.\begin{array}{l}
u=20 \\
a=-3 \\
v=0
\end{array}\right\} s=\frac{v^{2}-u^{2}}{2 a}
$$

$$
\Rightarrow \quad s=\frac{0-400}{-6}
$$

$$
\Rightarrow \quad s=\frac{200}{3}
$$

$\Rightarrow \quad$ Overall, it takes car $B\left(10+\frac{200}{3}\right)=\frac{230}{3}$ metres to stop.
$\Rightarrow \quad d$ must be at least $\frac{230}{3}-\frac{100}{2}=\frac{130}{3}$ metres

2008 - Ordinary Level - Question 1

Four points a, b, c and d lie on a straight level road.
A car, travelling with uniform retardation, passes point a with a speed of $30 \mathrm{~m} / \mathrm{s}$ and passes point b with a speed of $20 \mathrm{~m} / \mathrm{s}$.
The distance from a to b is 100 m . The car comes to rest at d.

Find (i) the uniform retardation of the car
(ii) the time taken to travel from a to b
(iii) the distance from b to d
(iv) the speed of the car at c, where c is the midpoint of $[b d]$.

Solution

a to $\left.b: \quad \begin{array}{l}u=30 \\ v=20 \\ s=100\end{array}\right\} v^{2}=u^{2}+2 a s \quad \Rightarrow \quad a=\frac{v^{2}-u^{2}}{2 s} \quad \Rightarrow \quad a=\frac{400-900}{200}$

$$
\begin{equation*}
\Rightarrow \quad a=-2.5 \mathrm{~m} / \mathrm{s}^{2} \tag{i}
\end{equation*}
$$

$\left.\begin{array}{rl}\left.a \text { to } b: \quad \begin{array}{l}u \\ v \\ v \\ a\end{array}\right) \\ =-2 \cdot 5\end{array}\right\} v=u+a t \quad \Rightarrow \quad t=\frac{v-u}{a} \quad \Rightarrow \quad t=\frac{20-30}{-2 \cdot 5}$
a to $\left.d: \quad \begin{array}{l}u=30 \\ v=0 \\ a=-2 \cdot 5\end{array}\right\} v^{2}=u^{2}+2 a s \quad \Rightarrow \quad s=\frac{v^{2}-u^{2}}{2 a} \quad \Rightarrow \quad s=\frac{0-900}{-5}$
$\Rightarrow \quad s=180 \mathrm{~m} . .($ (iii)
a to $\left.c: \quad \begin{array}{l}u=30 \\ a=-2 \cdot 5 \\ s=140\end{array}\right\} v^{2}=u^{2}+2 a s \quad \Rightarrow \quad v=\sqrt{u^{2}+2 a s} \Rightarrow \quad v=\sqrt{900-700}$
$\Rightarrow \quad v=\sqrt{200}=10 \sqrt{2} \mathrm{~m} / \mathrm{s}$
$\ldots(\mathrm{iv})$

2004 - Ordinary Level - Question 1

Three points a, b and c, lie on a straight level road such that $|a b|=|b c|=100 \mathrm{~m}$.
A car, travelling with uniform retardation, passes point a with a speed of $20 \mathrm{~m} / \mathrm{s}$ and passes point b with a speed of $15 \mathrm{~m} / \mathrm{s}$.
(i) Find the uniform retardation of the car.
(ii) Find the time it takes the car to travel from a to b, giving your answer as a fraction.
(iii) Find the speed of the car as it passes c, giving your answer in the form $p \sqrt{q}$, where $p, q \in \mathbb{N}$.
(iv) How much further, after passing c, will the car travel before coming to rest? Give your answer to the nearest metre.

Solution

a to $\left.b: \quad \begin{array}{l}u=20 \\ v=15 \\ s=100\end{array}\right\} v^{2}=u^{2}+2 a s \quad \Rightarrow \quad a=\frac{v^{2}-u^{2}}{2 s} \quad \Rightarrow \quad a=\frac{225-400}{200}$

$$
\begin{equation*}
\Rightarrow \quad a=-\frac{7}{8} \mathrm{~m} / \mathrm{s}^{2} . \tag{i}
\end{equation*}
$$

a to $\left.b: \quad \begin{array}{l}u=20 \\ v=15 \\ a=-\frac{7}{8}\end{array}\right\} v=u+a t \quad \Rightarrow \quad t=\frac{v-u}{a} \quad \Rightarrow \quad t=\frac{15-20}{-\frac{7}{8}}=-5\left(-\frac{8}{7}\right)$

$$
\begin{equation*}
\Rightarrow \quad t=\frac{40}{7} \text { seconds } \tag{ii}
\end{equation*}
$$

a to $\left.c: \quad \begin{array}{l}u=20 \\ a=-\frac{7}{8} \\ s=200\end{array}\right\} v^{2}=u^{2}+2 a s \Rightarrow v=\sqrt{u^{2}+2 a s} \Rightarrow \quad v=\sqrt{400+2\left(-\frac{7}{8}\right)(200)}$

$$
\begin{equation*}
\Rightarrow \quad v=\sqrt{50} \quad \Rightarrow \quad v=5 \sqrt{2} \mathrm{~m} / \mathrm{s} \tag{iii}
\end{equation*}
$$

c to rest:: $\left.\quad \begin{array}{l}u=5 \sqrt{2} \\ a=-\frac{7}{8} \\ v=0\end{array}\right\} v^{2}=u^{2}+2 a s \quad \Rightarrow \quad s=\frac{v^{2}-u^{2}}{2 a} \quad \Rightarrow \quad s=\frac{0-50}{-\frac{7}{4}}$

$$
\Rightarrow \quad s \simeq 29 \mathrm{~m} . .(\mathrm{iv})
$$

2003 - Higher Level - Question 1(a)

The points p, q and r all lie in a straight line.
A train passes point p with speed $u \mathrm{~m} / \mathrm{s}$. The train is travelling with uniform retardation $f \mathrm{~m} / \mathrm{s}^{2}$. The train takes 10 seconds to travel from p to q and 15 seconds to travel from q to r, where $|p q|=|q r|=125$ metres.
(i) Show that $f=\frac{1}{3}$.
(ii) The train comes to rest s metres after passing r.

Find s, giving your answer correct to the nearest metre.

Solution

$\left.\begin{array}{lll}p \text { to } q: & \begin{array}{l}u=u \\ a=-f \\ t=10 \\ s=125\end{array} \\ s\end{array}\right\} s=u t+\frac{1}{2} a t^{2} \quad \Rightarrow \quad 125=10 u-50 f 1 . .$. Equation 1
Assume train continues on and comes to rest at some point m :
p to $\left.m: \quad \begin{array}{l}u=\frac{85}{6} \\ a=-\frac{1}{3} \\ v=0\end{array}\right\} v^{2}=u^{2}+2 a s \quad \Rightarrow \quad s=\frac{v^{2}-u^{2}}{2 a} \quad \Rightarrow \quad s=\frac{0-\frac{7225}{36}}{-\frac{2}{3}} \simeq 301$ r to rest $=301-250=51$ metres

